Muscle hypertrophy models: applications for research on aging.
نویسندگان
چکیده
Muscle hypertrophy is an adaptive response to overload that requires increasing gene transcription and synthesis of muscle-specific proteins resulting in increased protein accumulation. Progressive resistance training (P(RT)) is thought to be among the best means for achieving hypertrophy in humans. However, hypertrophy and functional adaptations to P(RT) in the muscles of humans are often difficult to evaluate because adaptations can take weeks, months, or even years before they become evident, and there is a large variability in response to P(RT) among humans. In contrast, various animal models have been developed which quickly result in extensive muscle hypertrophy. Several such models allow precise control of the loading parameters and records of muscle activation and performance throughout overload. Scientists using animal models of muscle hypertrophy should be familiar with the advantages and disadvantages of each and thereby choose the model that best addresses their research question. The purposes of this paper are to review animal models currently being used in basic research laboratories, discuss the hypertrophic and functional outcomes as well as applications of these models to aging, and highlight a few mechanisms involved in regulating hypertrophy as a result of applying these animal models to questions in research on aging.
منابع مشابه
The effect of resistance training on the expression of cardiac muscle growth regulator messenger genes in obese male rats
Background: Obesity is associated with cardiovascular disease, followed by pathological cardiac hypertrophy. However, physical activity (resistance training) plays a role in modulating some of the intracellular messenger pathways associated with the regulation of pathologic hypertrophy. The aim of this study was to investigate The effect of resistance training on the expression of cardiac muscl...
متن کاملEffect of Eight Weeks of Resistance Training on Myostatin and Folistatin Proteins Content in Gastrocnemius Muscle Tissue of Elderly Rats
Introduction: Myostatin and follistatin proteins are key proteins in the regulation of muscle atrophy and hypertrophy. Aging and sarcopenia can lead to disruption of cellular mechanisms and the activity of these proteins. Therefore, the aim of the present study was to investigate the effect of eight weeks of resistance training on myostatin and folistatin proteins content in Gastrocnemius muscl...
متن کاملMyoblast models of skeletal muscle hypertrophy and atrophy.
PURPOSE OF REVIEW To highlight recent breakthroughs and controversies in the use of myoblast models to uncover cellular and molecular mechanisms regulating skeletal muscle hypertrophy and atrophy. RECENT FINDINGS Myoblast cultures provide key mechanistic models of the signalling and molecular pathways potentially employed by skeletal muscle in-vivo to regulate hypertrophy and atrophy. Recentl...
متن کاملLong-term Low-Intensity Endurance Exercise along with Blood-Flow Restriction Improves Muscle Mass and Neuromuscular Junction Compartments in Old Rats
Background: During the aging process, muscle atrophy and neuromuscular junction remodeling are inevitable. The present study aimed to clarify whether low-intensity aerobic exercise along with limb blood-flow restriction (BFR) could improve aging-induced muscle atrophy and nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction.Methods: Forty-eight male Wistar rats, aged 23–24 m...
متن کاملInterleukin-15 responses to aging and unloading-induced skeletal muscle atrophy.
Interleukin-15 (IL-15) mRNA is constitutively expressed in skeletal muscle. Although IL-15 has proposed hypertrophic and anti-apoptotic roles in vitro, its role in skeletal muscle cells in vivo is less clear. The purpose of this study was to determine if skeletal muscle aging and unloading, two conditions known to promote muscle atrophy, would alter basal IL-15 expression in skeletal muscle. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Canadian journal of applied physiology = Revue canadienne de physiologie appliquee
دوره 30 5 شماره
صفحات -
تاریخ انتشار 2005